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The main motivation is to find a good microscopic model to
describe oscillating biological systems, mostly neurons.

We will consider large systems of interacting point processes
presenting intrinsic oscillations in large scale, although single
neuron’s dynamics do not encode any oscillatory behavior.

In other words : we try to answer to the following question : How
does periodic behavior emerge at a macroscopic level when the
single units do not have any tendency to behave periodically ?
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Outline

1 Introduction of the model : Point process models for large
systems of interacting neurons given by Hawkes processes.

2 Propagation of chaos for a particular multi-class system.

3 Erlang kernels allow to develop the memory. Associated
Piecewise Deterministic Markov Process (PDMP).

4 Study of the oscillatory behavior of the limit system.

5 And of the finite size system =⇒ Large deviations.
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Neurons

• Neurons : generate and propagate action potentials the long of
their axons.

• They communicate by transmitting spikes : this is a fast
transmembrane current of K+/Na+−ions, stimulated by ion
pumps.
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Closer look to spikes

The shape and the time duration of spikes is almost deterministic -
and always “the same” (for a fixed neuron, under the same
experimental conditions)

Figure: Picture by R. Höpfner, Mainz
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The next picture is by Jahn, Berg, Hounsgaard, Ditlevsen, 2011. It
also shows that spikes do not appear when the membrane
potential hits a fixed threshold...

Figure: Picture in Jahn et al. 2011
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• The duration of each spike is very short (about 1 ms) - followed
by a refractory period during which the neuron can not spike again
(about 1 ms).

• Since shape of spike almost deterministic → report if at a given
time there is presence or absence of a spike → spike trains.

• We do this in continuous time.
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Point processes

Point process model : for each neuron, we model the random
times of appearance of a spike.

N neurons (= point processes) which interact.

Counting process associated to neuron i , 1 ≤ i ≤ N :

Zi (t) = number of spikes of neuron i during [0, t].
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Spike counting process associated to neuron i : Zi (t) has
intensity process λi (t) defined by

P(Zi has a jump during ]t, t + dt]|Ft) = λi (t)dt.

We will use Hawkes intensities : intensity λi (t) incorporates
the interactions between the neurons.

It also represents the way the spiking behavior of a neuron
depends on its history :
It is commonly admitted that spike trains should be processes
having infinite or variable memory.

Hence λi (t) is a stochastic process, depending on the
whole history before time t.
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Interacting Hawkes processes

• Intensity of i−th neuron given by

λi (t) = fi

 N∑
j=1

∫
]0,t[

hij(t − s)dZj(s)


↑ rate fct ↑ loss fct ↑ past event

• fi = spiking rate function of neuron i . fi : R→ R+, increasing,
Lipschitz.

• hij measures the influence of neuron j on neuron i and how this
influence vanishes with the time : hij(t − s) describes how a
spike of neuron j lying back s time units in the past influences
the present spiking probability of neuron i at time t.
• If hij is not of compact support, then : truly infinite memory
process.
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Example

λi (t) = fi

∑
j

∫
]0,t[

Wije
−αi (t−s)dZj(s)


− Wij = synaptic weight of neuron j on neuron i . If Wji > 0, then
the synapse is excitatory, if Wji < 0, then it is inhibitory.
− e−αi (t−s) : past events are forgotten at exponential speed.
− Neurons which have a direct influence on the spiking activity of
i are those belonging to

Vi := {j : Wij 6= 0} ⇒ Interaction graph.
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Hawkes intensity

• Hawkes processes are very popular nowadays and widely used :
− in neuroscience : Hansen, Reynaud-Bouret and Rivoirard (2015),
Julien Chevallier (2016), ...
− in genomics : Reynaud-Bouret and Schbath (2006), ...
− in financial econometrics : Jaisson and Rosenbaum (2014), ...
• have been introduced in 1971 by Hawkes to model earthquakes
and the appearance of their aftershocks.
• Main idea : Self exciting (influencing) point processes : past
events trigger future events.
• For linear Hawkes processes, there is a representation via an
equivalent branching process.
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Discussion of the model

•
Xi (t) :=

∑
j

∫
]0,t[

hij(t − s)dZj(s) :

can be interpreted as membrane potential of neuron i at time t.

• Integrate-and-fire model : the membrane potential of neuron i
collects all the past spike events of its presynaptic neurons. The
neuron fires depending on the height of its actual membrane
potential, at rate fi (Xi (t)). (Warning : in the literature, the name
“Integrate-and-fire”-model is often reserved to diffusion models.)
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Multiclass systems of interacting neurons

Multi-class framework :

• Our system is made of n populations or clusters of neurons
k = 1, 2, . . . , n. This number n is fixed throughout the talk.

• Each population k consists of Nk neurons described by their
counting processes

Zk,i (t), 1 ≤ i ≤ Nk .

• Within a population, all neurons behave in the same way. This is
a mean-field assumption.
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• Intensity of any neuron belonging to population k :

λk(t) = fk

 1

Nk+1

∑
1≤j≤Nk+1

∫
]0,t[

hk(t − s)dZk+1,j(s)

 .

• fk = jump rate function of population k ; Lipschitz.

• Very particular interaction graph : Population k only
influenced by population k + 1.

Function hk measures the influence
of a typical neuron of population k + 1 on a typical neuron of
population k ; hk ∈ L2

loc(R+,R).

• We are in a mean field frame : population k + 1 influences
population k only through its empirical measure. And we are in a
cyclic feedback frame ....
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Mean field limit

• What happens in the large system size limit ?

• I.e. N = N1 + . . .+ Nn total number of neurons →∞ such that
for each population

lim
N→∞

Nk

N
> 0.

• Remember the intensity of population k

λk(t) = fk

∫
]0,t[

hk(t − s)

 1

Nk+1

∑
1≤j≤Nk+1

dZk+1,j(s)


↑ LLN→ dE(Z̄k+1(s)),

where Z̄k+1 is the counting process of a typical neuron belonging
to population k + 1 in the N →∞−limit.
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Limit system

• Limit system : family of counting processes Z̄k(t), k = 1, . . . , n,
solution of an inhomogeneous equation

Z̄k(t) =

∫ t

0

∫
R+

1{z≤fk (
∫ s

0 hk (s−u)dE(Z̄k+1(u))}N
k(ds, dz),

where Nk , k = 1, . . . , n are independent PRM on R+ × R+ with
intensity dsdz .

• Existence of a pathwise unique solution of the limit system
standard under Lipschitz assumption on the fk ; follows ideas of
Delattre, Fournier and Hoffmann (2016) on high-dimensional
Hawkes processes in the one-population case.
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Convergence to limit system

• Convergence of the finite size system (of the collection of
empirical measures of each population) to the limit : standard as
well : We take empirical measures within each population and
obtain

Theorem (Propagation of chaos, Ditlevsen and L. 2017)

(
1

N1

∑
1≤i≤N1

δ(ZN
1,i (t))t≥0

, . . . ,
1

Nn

∑
1≤i≤Nn

δ(ZN
n,i (t))t≥0

)

→ L((Z̄1(t), . . . , Z̄n(t))t≥0)

in probability, as N →∞. (P(D(R+,R+)) is endowed with the weak

convergence topology ass. with the Skorokhod top. on D(R+,R+).)
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• Multi-population frame : reminiscent of Graham (2008), see also
Graham and Robert (2009) : coined the notion of
“multi-chaoticity”.

• Note that in the limit the different populations are independent.
Interactions of classes do only survive in law.
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Study of intensities of the limit system

• Taking expectations yields : mk
t = E(Z̄k(t)), k = 1, . . . , n, solves

dmk
t

dt
= fk

(∫ t

0
hk(t − u)dmk+1

u

)
.

• Equations depending on the whole history.

• Hawkes processes are truly infinite memory processes - the
intensity depends on the whole history.

• We will present situations, in which these limit intensities dmk
t

dt
OSCILLATE ! We do this in the case where the system can be
completed to a system of ODE’s.
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Developing the memory

• Consider Erlang memory kernels :

hk(t) = ck
tηk

(ηk)!
e−νk t , νk > 0, ηk ∈ N0, ck ∈ R.

• The delay of influence of the past is distributed. It takes its
maximum at about ηk/νk time units back in the past.
• The higher the order of the delay ηk , the more the delay is
concentrated around its mean value (ηk + 1)/νk .
• If ck > 0, then the influence of pop k + 1 on pop k is excitatory,
else : inhibitory.
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Recall : Limit integrated intensities given by

mk
t = E(Z̄k(t)), k = 1, . . . , n,

where
dmk

t

dt
= fk

(∫ t

0
hk(t − u)dmk+1

u

)
.

We write

xk
t =

∫ t

0
hk(t − u)dmk+1

u .

CLAIM : In case of Erlang memory kernels hk , it is possible to
complete (x1, . . . , xn) to a higher dimensional system of
ODE’s ! ! ! ! This is a standard trick in delay equations that I am
going to explain now.
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Susanne Ditlevsen,, Eva Löcherbach Interacting neurons



Point process models
Diffusion approximation

Developing the memory - continued

• Suppose e.g. hk(t) = h(t) = ckte−νk t (short memory of length
1).

h′(t) = −νkh(t) + cke−νk t

=: −νkh(t) + h1(t),

and
h′1(t) = −νkh1(t) : system closed !

• In terms of the intensity process : Introduce for 1 ≤ k ≤ n,

xk
t =

∫ t

0
hk(t − s)dmk+1

s , yk
t =

∫ t

0
h1(t − s)dmk+1

s (s).

⇒ two dimensional system of ODE’s

ẋk
t = −νkxk

t + yk
t ,

ẏk
t = −νkyk

t + ck
dmk+1

t

dt
= −νkyk

t + ck fk+1(xk+1
t ),

where the last equation is linked to the next population.
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ẋk
t = −νkxk

t + yk
t ,

ẏk
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Summary

• memory kernels of type hk(t) = ckte−νk t give rise to a 2n−
dimensional system of coupled ODE’s which are of type

ẋk
t = −νkxk

t + yk
t , ẏk

t = −νkyk
t + ck fk+1(xk+1

t ),

for 1 ≤ k ≤ n.

• Increasing the delay of the memory kernel will increase the
dimension of this system of coupled ODE’s.

• This can be restated in terms of the original finite size jump
process ....
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Associated system of PDMP’s

Let

X k,1(t) =
1

Nk+1

Nk+1∑
j=1

∫
]0,t[

hk(t − s)dZk+1,j(s), 1 ≤ k ≤ n,

and complete to system X k,i , 1 ≤ k ≤ n, 1 ≤ i ≤ ηk + 1 : PDMP
with generator

Aϕ(x) =
n∑

k=1

[
ηk∑
i=1

{−νkxk,i + xk,i+1} ∂ϕ
∂xk,i

− νkxk,ηk+1 ∂ϕ

∂xk,ηk+1

]

+
n∑

k=1

Nk+1fk+1(xk+1,1)

[
ϕ(x +

ck
Nk+1

ek,ηk+1)− ϕ(x)

]
.
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Some simulations in the case of a single neuron

A single neuron’s spike train represented by a Hawkes process with
an Erlang memory kernel, of memory order 3 :
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Figure: Picture by Aline Duarte, Sao Paulo
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Figure: Picture by Aline Duarte
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Monotone cyclic feedback systems

• Recall we wanted to find oscillations for the limit intensities.
• Our system of coupled ODE’s in case of memory of order 1 : For
1 ≤ k ≤ n,

ẋk
t = −νkxk

t + yk
t , ẏt = −νkyk

t + ck fk+1(xk+1
t ).

• This system is a monotone cyclic feedback system
(Mallet-Paret and Smith 1990).
− Cyclic means : population k is only influenced by population
k + 1, for all k .
− Feedback : population n is influenced by population 1.
− Monotone : all rate functions fk are non-decreasing.
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• Put δ :=
∏n

k=1 ck . If δ > 0, the system is of positive feedback,
else, it is of negative feedback.

We will consider the negative
feedback case.

Suppose that fk , 1 ≤ k ≤ n, are bounded analytic Lipschitz
functions and that the system is of negative feedback. Then :

Theorem (Mallet-Paret and Smith)

1) ∃! equilibrium point x∗ of the above system.
2) ∃ easily verifiable condition implying that x∗ is unstable. In this
case, there exists at least one – but not more than a finite number
of – non constant periodic orbits. One of them is attracting.
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Remark

So here they are, the oscillations (not for the mk
t , but for the

intensities) ! Because : non constant periodic orbit = oscillations

Simulation of a system with 2 populations and memory 3 for the
first population and memory 4 for the second one :
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The role of the order of the memory

Definition

We call order of the memory of population k the index ηk ∈ N
such that

hk(t) = ck
tηk

(ηk)!
e−νk t .

We call “total order of memory of the system” the number
κ := n +

∑n
k=1 ηk .

Proposition (Hopf bifurcation due to increasing memory)

Suppose that νk = 1, for all 1 ≤ k ≤ n. Then there exists κ∗ such
that for all κ < κ∗, the equilibrium point x∗ is stable. For κ ≥ κ∗,
the systems presents oscillations.

So increasing the DELAYS pushes the system towards oscillations.

Susanne Ditlevsen,, Eva Löcherbach Interacting neurons



Point process models
Diffusion approximation

Central limit Theorem

We have well understood the behavior of the limit system ....

To which extent does the large time behavior of the limit system
(m1

t , . . . ,m
n
t ) predict the large time behavior of the finite size

system ? ? ?

⇒ CLT where convergence of both N and t to infinity is
considered. Under suitable assumptions on the way N, t →∞ :
depends on spectral properties of offspring matrix.
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Diffusion approximation of the intensity process

Second answer to : To which extent are the oscillations of the limit
system also felt by the finite size system ? :
Have a look at the “Large intensity-small jump size”-diffusion
approximation (in case n = 2 and η1 = η2 = 1) :

Recall the generator of the associated PDMP :

Aϕ(x) =

2∑
k=1

[
{−νkxk,1 + xk,2} ∂ϕ

∂xk,1
− νkxk,2 ∂ϕ

∂xk,2

]

+
2∑

k=1

Nk+1fk+1(xk+1,1)

[
ϕ(x +

ck
Nk+1

ek,2)− ϕ(x)

]
.

Small jumps of size ck
Nk+1

appearing at rate Nk+1fk+1 ⇒
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dX1(t) = −ν1X1(t)dt + Y1(t)dt
dY1(t) = −ν1Y1(t)dt + c1f2(X2(t))dt

+ c1√
N2

√
f2(X2(t)dB2(t)

 ,

similar equations for the 2nd population (X2(t),Y2(t)).

• Can be extended to higher order delays in Erlang memory kernels
=⇒ longer cascades of SDE’s.

• We have the control on the weak error

‖Ptϕ− P̃tϕ‖∞ ≤ Ct
‖ϕ‖4,∞

N2
.
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General comments

• We obtain a diffusion of high dimension driven by only 2
Brownian motions - each of them approximating the jump noise of
one of the populations.

• We have to treat the memory terms as auxiliary variables. This
gives rise to coordinates of the diffusion without noise ⇒ Highly
degenerate diffusion.

• Cascade structure of the drift : a coordinate does only depend
on itself and the following coordinate.
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• Due to the cascade structure of the drift it is easy to show that
the diffusion satisfies the weak Hörmander condition.

• Hence it is strong Feller (Ichihara and Kunita 1974).

• Using a convenient Lyapunov-function and the control theorem

=⇒ ∃ attainable point (which can be chosen to be the unstable
equilibrium of the limit monotone cyclic feedback system).

=⇒ diffusion is recurrent in the sense of Harris, with unique
invariant probability measure.
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Theorem

Let Γ be a non constant periodic orbit of the limit system which is
asymptotically orbitally stable. Then for all ε > 0 and for all
T > 0, for all starting configurations x , Px−almost surely,

the approx diffusion visits Bε(Γ) during a time period of length T ,

infinitely often.

Hence the diffusion approximation visits the oscillatory region
infinitely often.
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Large deviations

• Large deviations result : For large N, the diffusion stays within
tubes around the limit cycle during long periods, before eventually
leaving such a tube after a time which is of order

eNV̄ ,

V̄ : quasi-potential, related to control problem : cost of steering
the process from the limit cycle to the boundary of the tube
around the limit cycle.

• Can be made precise in the sense of sample path large deviations
for diffusions with small noise, in the sense of Freidlin-Wentzell
(although diffusion is highly degenerate). Most important point :
establish the necessary control theory in our framework. See
Löcherbach JTP 2017 for details.
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Some simulations of the approximating diffusion in the case n = 2

Susanne Ditlevsen,, Eva Löcherbach Interacting neurons



Point process models
Diffusion approximation

Conclusions

• Infinite memory (of Hawkes processes) and introduction of
successive memory terms as auxiliary variables give rise to
hypo-elliptic diffusion approximation and its specific cascade
structure.

• This cascade structure implies :
− weak Hörmander condition
− controllability of the system

• Oscillations appear from the non-linear “McKean-Vlasov”-type
structure of the limit system (system whose dynamics depends on
its own law) - the dynamics of each single particle do not include
any periodic behavior.
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Remarks

• Specific interaction graph structure not necessary for propagation
of chaos : other interaction graphs possible.

• What happens if there are periodic changes in the underlying
interaction graph ?

• Example of a dynamical system where there are several
coexisting stable orbits ?

• What happens when the synaptic strength (i.e. the factor ck)
changes over time (→ plasticity ?)

• And if we add an external signal during some time ?
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Final remarks on Hawkes processes

• Erlang kernels allow to describe certain Hawkes processes via an
associated system of PDMP’s

• Their stability behavior can be easily analyzed.

• Gives another approach to Simulation and Stability of non-linear
Hawkes processes (work with A. Duarte and G. Ost, 2017).
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Thank you for your attention.
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