A CBI approach to financial Modelling

Ying Jiao

Université Claude Bernard - Lyon 1

Joint work with Chunhua Ma (Nankai University), Simone Scotti (Université Paris 7) and Carlo Sgarra (Politecnico di Milano)

2 May 2018 Berlin-Paris Young Researchers workshop on Stochastic Analysis with Applications in Biology and Finance

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

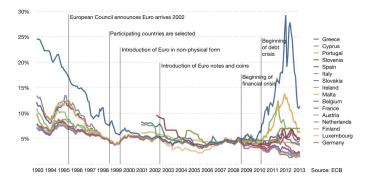
Introduction

- Particular behaviors of some financial data:
 - Sovereign bond markets with persistency of low interest rates and significant fluctuations in the Euro zone;
 - Electricity prices exhibit high spikes and rapid mean-reversion, seasonality...
- Self-exciting features and jump clustering effect?
- How to include all the features into a unified and parsimonious framework description?

ション ふゆ アメリア メリア しょうくの

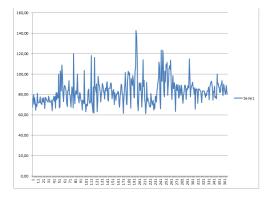
 An approach based on CBI (continuous state branching processes with immigration) processes

Figure: 10-years interest rates of Euro area countries.



・ロト ・ 日 ト ・ 日 ト ・ 日 ・ つくぐ

Figure: Daily electricity prices in Italy on 2012.



・ロト ・ 何 ト ・ ヨ ト ・

ъ

э

Modelling approaches in finance

- Hawkes process to model the "self-exciting" and the "clustering" feature: Aït-Sahalia & Jacod (2009), Errais, Giesecke & Goldberg (2010), Dassios & Zhao (2011), Rambaldi, Pennesi & Lillo (2014), and Jaisson & Rosenbaum (2015)...
- Affine models for interest rate term structure: Duffie, Pan & Singleton (2000), Filipović (2001, 2009), Duffie, Filipović & Schachermayer (2003), Keller-Ressel & Steiner (2008), ...
- Random fields description in interest rate and energy: Kennedy (1994), Albeverio, Lytvynov & Mahnig (2004), Benth, Kallsen, Meyer-Brandis (2007), Barndorff-Nielsen, Benth & Veraart (2013)

Some literature on CBI processes

Books

- Li, Z.: Measure-Valued Branching Processes, Springer, Berlin (2011).
- Pardoux, E.: Probabilistic Models of Population Evolution, Springer, Berlin (2016)

(Very partial) Papers

- Dawson, D.A. & Li, Z.: Skew convolution semigroups and affine Markov processes. Ann. Probab. 34, 1103-1142 (2006)
- Dawson, A. & Li, Z.: Stochastic equations, flows and measure-valued processes. Ann. Probab. 40, 813-857 (2012)
- Li, Z. & Ma, C.: Asymptotic properties of estimators in a stable Cox-Ingersoll-Ross model. *Stoch. Proc. Appl.* 125, 3196-3233 (2015)

Plan of the talk

- Continuous state branching processes
- α -CIR model and properties
- Applications to interest rate and power price modelling

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Concluding remarks

Model formulation

Integral representation

$$Y_{t} = Y_{0} + \int_{0}^{t} a(b - Y_{s}) ds + \sigma \int_{0}^{t} \int_{0}^{Y_{s}} W(ds, du) + \sigma_{Z} \int_{0}^{t} \int_{0}^{Y_{s-}} \int_{\mathbb{R}^{+}} \zeta \widetilde{N}(ds, du, d\zeta),$$

$$(1)$$

- W(ds, du): white noise on \mathbb{R}^2_+ with intensity dsdu,
- $\widetilde{N}(ds, du, d\zeta)$: compensated Poisson random measure on \mathbb{R}^3_+ with intensity $dsdu\mu(d\zeta)$,
- ▶ $\mu(d\zeta)$ is a Lévy measure satisfying $\int_0^\infty (\zeta \wedge \zeta^2) \mu(d\zeta) < \infty$. Besides, *W* and *N* are independent of each other.
- It follows from of Dawson and Li (2012) that this equation has a unique strong solution.

The self-exciting feature

- We want to illustrate how the self-exciting property arises in the present framework.
- Consider a simple Hawkes process with exponential kernel, which is defined as a point process J with intensity

$$Y_{t} = Y_{t}^{*} + \int_{0}^{t} e^{-a(t-s)} dJ_{s}$$
 (2)

ション ふゆ アメリア メリア しょうくの

and Y^* is deterministic, representing the background rate.

When a jump arrives, the intensity increases, which incites the arrival of the next jump, that is the so-called self-exciting property of Hawkes processes.

Link to Hawkes process

- In order to facilitate the comparison with our integral representation, we give a different characterization of the intensity.
- Let *N* be a Poisson random measure on \mathbb{R}^2_+ with intensity dsdu. Consider the case where J_t is of the form $\int_0^t \int_0^{Y_{s-}} N(ds, du)$ and hence

$$Y_{t} = Y_{t}^{*} + \int_{0}^{t} \int_{0}^{Y_{s-}} e^{-a(t-s)} N(ds, du).$$
(3)

- In this form, the self-exciting feature can be observed as follows: the frequency of jumps grows with the process itself due to the presence of the integral with respect to the variable u. Moreover, when Y* takes certain particular form, Y becomes a branching process.
- In this context, the self-exciting features is equivalent to the branching property and the jump intensity is proportional to the process Y itself.

Link to CIR model

- A particular case when the jump term vanishes corresponds to the well-known CIR model for short interest rates r_t.
- We illustrate the connection of the above integral representation for the CIR model with Hawkes processes.
- When $\sigma_Z = 0$, the CIR process *r* is given in the form:

$$r_{t} = r_{0} + \int_{0}^{t} a(b - r_{s}) ds + \sigma \int_{0}^{t} \int_{0}^{r_{s}} W(ds, du), \quad (4)$$

The equivalent form is

$$r_{t} = r_{t}^{*} + \sigma \int_{0}^{t} \int_{0}^{r_{s}} e^{-a(t-s)} W(ds, du)$$
(5)

where r_t^* is a deterministic function given by $r_t^* = r_0 e^{-at} + ab \int_0^t e^{-a(t-s)} ds$. This expression shows the self-exciting feature.

Link to Hawkes process (continued)

• When $\sigma = 0$ and $\mu(d\zeta) = \delta_1(dz)$, then Y is given by

$$Y_{t} = Y_{0} + abt - \int_{0}^{t} (a + \sigma_{N}) Y_{s} ds + \sigma_{N} \int_{0}^{t} \int_{0}^{Y_{s-}} N(ds, du)$$
(6)

which is the intensity of Hawkes process $\int_0^t \int_0^{Y_{s-}} N(ds, du)$, N being the Poisson random measure with intensity dsdu.

► Consider a sequence $\{Y_t^{(n)}, t \ge 0\}_{n \ge 1}$ defined by (6) with parameters $(a/n, nb, \sigma_N)$. Then

$$(Y_{nt}^{(n)}/n, t \ge 0) \xrightarrow{\mathcal{L}} r \text{ in } D(\mathbb{R}_+),$$

where $D(\mathbb{R}_+)$ is the Skorokhod space of càdlàg processes and the process *r* follows a CIR model.

 Jaisson and Rosenbaum (2015): nearly unstable Hawkes process converges, after suitable scaling, to a CIR process.

The α -CIR model setup

We consider the root SDE representation of the $\alpha\text{-CIR}$ model

$$r_{t} = r_{0} + \int_{0}^{t} a(b - r_{s}) ds + \sigma \int_{0}^{t} \sqrt{r_{s}} dB_{s} + \sigma_{Z} \int_{0}^{t} r_{s-}^{1/\alpha} dZ_{s}$$
(7)

- $B = (B_t, t \ge 0)$ a Browinan motion
- Z = (Z_t, t ≥ 0) a spectrally positive α-stable compensate Lévy process with parameter α ∈ (1,2] with

$$\mathbb{E}\left[e^{-qZ_t}\right] = \exp\left\{-\frac{tq^{\alpha}}{\cos(\pi\alpha/2)}\right\}, \quad q \ge 0.$$

B and Z are independent

 Z_t follows the α -stable distribution $S_{\alpha}(t^{1/\alpha}, 1, 0)$ with scale parameter $t^{1/\alpha}$, skewness parameter 1 and zero drift.

Equivalence of two representations

We choose the Lévy measure in the integral representation to be

$$\mu(d\zeta) = -\frac{1_{\{\zeta>0\}}d\zeta}{\cos(\pi\alpha/2)\Gamma(-\alpha)\zeta^{1+\alpha}}, \quad 1 < \alpha < 2,$$
(8)

Then the root representation (7) and the integral representation (1) are equivalent in the following sense by Li (2011):

- The solutions of the two equations have the same probability law.
- > On an extended probability space, they are equal almost surely.

A natural extension of the CIR model

- When σ_Z = 0, we recover the CIR model.
- When $\alpha = 2$, it also reduces to a CIR model but with volatility parameter $(\sigma^2 + 2\sigma_z^2)^{1/2}$.
- The difference of Z from a Brownian motion is controlled by the tail index α :

 $\diamond \alpha$ = 2: Z is a Brownian motion scaled by $\sqrt{2}$;

- $\diamond \alpha < 2$: Z is a pure jump process with heavy tails. More as α close to 1, more likely Z_t takes values far from median;
- \diamond comparison with Poisson process: Z has an infinite number of (small) jumps over any time interval, allowing it to capture the extreme activity.
- Existence of the unique strong solution by Fu and Li (2010).

Simulation of processes Z and r with different α

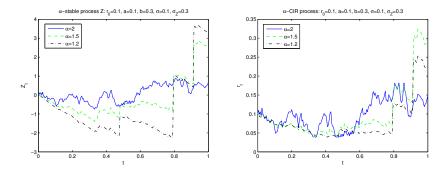


Figure: Three parameters of α : 2 (blue), 1.5 (green) and 1.2 (black)

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ の Q @

Boundary condition:

The point 0 is an inaccessible boundary if and only if $2ab \ge \sigma^2$. In particular, a pure jump α -CIR process with ab > 0 never reaches 0 since $\sigma = 0$.

Branching property :

r can be decomposed as $r = r^{(1)} + r^{(2)}$ where for $i = 1, 2, r^{(i)}$ is an α -CIR $(a, b^{(i)}, \sigma, \sigma_Z, \alpha)$ process such that $r_0 = r_0^{(1)} + r_0^{(2)}$ and $b = b^{(1)} + b^{(2)}$.

ション ふゆ く 山 マ チャット しょうくしゃ

Continuous state branching process with immigration (CBI) CBI (Kawazu & Watanabe 1971) of branching mechanism $\Psi(\cdot)$ and immigration rate $\Phi(\cdot)$: Markov process X with state space \mathbb{R}_+ verifying

$$\mathbb{E}_{x}\left[e^{-pX_{t}}\right] = \exp\left[-xv(t,p) - \int_{0}^{t} \Phi(v(s,p))ds\right],$$

where $v : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}$ satisfies

$$\frac{\partial v(t,p)}{\partial t} = -\Psi(v(t,p)), \quad v(0,p) = p$$

and Ψ and Φ are functions on \mathbb{R}_+ given by

$$\Psi(q) = \beta q + \frac{1}{2}\sigma^2 q^2 + \int_0^\infty (e^{-qu} - 1 + qu)\pi(du),$$

$$\Phi(q) = \gamma q + \int_0^\infty (1 - e^{-qu})\nu(du),$$

with $\sigma, \gamma \ge 0$, $\beta \in \mathbb{R}$ and π, ν being two Lévy measures such that $\int_0^\infty (u \wedge u^2) \pi(du) < \infty$ and $\int_0^\infty (1 \wedge u) \nu(du) < \infty$.

Link between α -CIR and CBI processes

Let r be an α -CIR $(a, b, \sigma, \sigma_Z, \alpha)$ process. Then r is a CBI with

branching mechanism: $\Psi(q) = aq + \frac{\sigma^2}{2}q^2 - \frac{\sigma_Z^{\alpha}}{\cos(\pi\alpha/2)}q^{\alpha}$ (9) immigration rate: $\Phi(q) = abq$. (10)

Consequences:

- Let $r^{(\alpha)}$ be α -CIR $(a, b, \sigma, \sigma_Z, \alpha)$ process, $\alpha \in (1, 2]$. Then $r^{(\alpha)} \xrightarrow{\mathcal{L}} r^{(2)}$ in $D(\mathbb{R}_+)$ as $\alpha \to 2$.
- Laplace transform (cf. Filipović (2001)):

$$\mathbb{E}\left[e^{-\xi r_t - p\int_0^t r_s ds}\right] = \exp\left(-r_0 v(t,\xi,p) - \int_0^t \Phi(v(s,\xi,p)) ds\right),$$

with
$$\partial_t v(t,\xi,p) = -\Psi(v(t,\xi,p)) + p, \quad v(0,\xi,p) = \xi.$$

• As $t \to +\infty$, r_t has a limite distribution r_∞ given by

$$\mathbb{E}[e^{-pr_{\infty}}] = \exp\left\{-\int_{0}^{p} \frac{\Phi(q)}{\Psi(q)} dq\right\}, \quad p \ge 0.$$

Equivalent martingale measure for bond pricing

- Let r be an α-CIR(a, b, σ, σ_Z, α) processes under the initial probability ℙ.
- Fix $\eta \in \mathbb{R}$ and $\theta \in \mathbb{R}_+$, and define

$$U_t \coloneqq \eta \int_0^t \int_0^{r_s} W(ds, du) + \int_0^t \int_0^{r_{s-}} \int_0^\infty (e^{-\theta\zeta} - 1) \widetilde{N}(ds, du, d\zeta).$$

- Change of probability: dQ/dℙ = E(U), with E(U) the Doléans-Dade exponential of U (Kallsen & Muhle-Karbe, 2010).
- ▶ *r* is an α -CIR($a', b', \sigma, \sigma_Z, \alpha$) type process under \mathbb{Q} with

$$a' = a - \sigma \eta - \frac{\alpha \sigma_Z}{\cos(\pi \alpha/2)} \theta^{\alpha - 1}, \ b' = ab/a',$$

and a modified Lévy measure

$$\mu'(d\zeta) = -\frac{\mathrm{e}^{-\theta\zeta}\mathbf{1}_{\{\zeta>0\}}}{\cos(\pi\alpha/2)\Gamma(-\alpha)\zeta^{1+\alpha}}d\zeta.$$

r remains to be a CBI process under \mathbb{Q} .

Application to bond pricing

For simplicity, we assume that the short rate r is given by an α -CIR $(a, b, \sigma, \sigma_Z, \mu, \alpha)$ model under \mathbb{Q} .

Zero-coupon bond price:

$$B(t,T) = \mathbb{E}^{\mathbb{Q}}\left[\exp\left(-\int_{t}^{T} r_{s} ds\right) | \mathcal{F}_{t}\right] = \exp\left(-r_{t} v(T-t) - ab \int_{0}^{T-t} v(s) ds\right)$$

where $v(\cdot)$ is given by

$$\frac{\partial v(t)}{\partial t} = 1 - \Psi(v(t)), \quad v(0) = 0,$$

with
$$\Psi(q) = aq + \frac{\sigma^2}{2}q^2 - \frac{\sigma_Z^{\alpha}}{\cos(\pi\alpha/2)}q^{\alpha}$$
.

We have

$$v(t) = f^{-1}(t)$$
 where $f(t) = \int_0^t \frac{dx}{1 - \Psi(x)}$ (11)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition

The function $v(\cdot)$ is increasing with respect to $\alpha \in (1,2]$. In particular, the bond price B(0, T) is decreasing with respect to α .

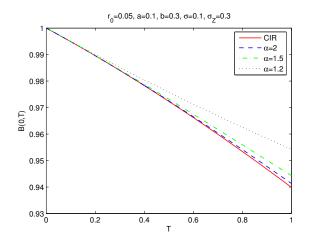


Figure: Bond price is decreasing w.r.t. α , curve CIR (in red) corresponds to $\sigma_Z = 0$

Remarks on bond prices

- Empirical studies underline that CIR model systematically overestimates short interest rates, e.g. Brown and Dybvig (1986) and Gibbons and Ramaswamy (1993)
- The above proposition shows that the α-CIR model is suitable to describe the low interest rate in the expectation sense.
- Explanation based on self-exciting property: as the interest rate becomes low, the self-exciting feature implies decreasing frequency of jumps and enforce the tendency of low interest rate.
- In other CIR+jump models e.g. Duffie and Gârleanu (2001), Keller-Ressel and Steiner (2008), LOU etc., the bond prices are in general smaller than the CIR ones (difficult to reconcile the jumps with low interest rate).

Jump behavior

- The jumps, especially the large jumps capture the significant changes in the interest rate and may imply the downgrade risk of credit quality.
- Fix y > 0. Consider the jumps of the process r which are larger than σ_Zy and the associated truncated process r^(y) as

$$\begin{split} r_t^{(y)} &= r_0 + \int_0^t \widetilde{a}(\alpha, y) \big(\widetilde{b}(\alpha, y) - r_s \big) ds + \sigma \int_0^t \int_0^{r_s} W(ds, du) \\ &+ \sigma_Z \int_0^t \int_0^{r_{s-}} \int_0^y \zeta \widetilde{N}(ds, du, d\zeta). \end{split}$$

• It is also a CBI process which coincides with r up to the first large jump $\tau_y := \inf\{t > 0 : \Delta r_t > \sigma_Z y\}$ and has the branching mechanism given by

$$\Psi^{(y)} = \Psi + \sigma_Z^{\alpha} \int_y^{\infty} (1 - e^{-q\zeta}) \mu(d\zeta).$$

Laplace transform of the jump counter process

Let J_t^y denote the number of jumps of r with jump size larger than $\sigma_Z y$ in [0, t], i.e.

$$J_t^{y} := \sum_{0 \le s \le t} \mathbb{1}_{\{\Delta r_s > \sigma_Z y\}}.$$

Then for any $p \ge 0$ and $t \ge 0$,

$$\mathbb{E}\left[e^{-pJ_t^{y}}\right] = \exp\left(-l(p, y, t)r_0 - ab\int_0^t l(p, y, s)ds\right)$$

where I(p, y, t) is the unique solution of the following equation

$$\frac{\partial l(p, y, t)}{\partial t} = \sigma_Z^{\alpha} \int_y^{\infty} \left(1 - e^{-p - l(p, y, t)\zeta}\right) \mu_{\alpha}(d\zeta) - \Psi_{\alpha}^{(y)}(l(p, y, t)),$$

with initial condition I(p, y, 0) = 0.

Probability law of the first large jump

We have

$$\mathbb{P}(\tau_{y} > t) = \mathbb{P}(J_{t}^{y} = 0) = \exp\left(-l(y, t)r_{0} - ab\int_{0}^{t}l(y, s)ds\right)$$

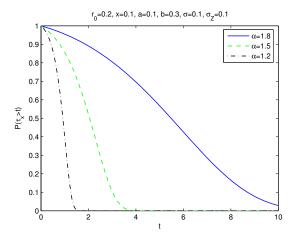
where I(y, t) is the unique solution of

$$\frac{dI}{dt}(y,t) = \sigma_Z^{\alpha} \int_y^{\infty} \mu(d\zeta) - \Psi^{(y)}(I(y,t)),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

with initial condition I(y, 0) = 0.

Probability function $\mathbb{P}(\tau_y > t)$ for the first big jump



◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● の Q (2)

Application to power price modeling

We assume the spot price process S_t to evolve according to the following dynamics:

$$S_t = \alpha(t) + X_t$$

where $\alpha(t)$ is a seasonality function of deterministic type and the process X_t is a superposition of the factors Y_t^i :

$$X_t = \sum Y_t^i,$$

The factors Yⁱ_t evolve according to equation (1) written before, but we neglect the Brownian contribution

$$Y_t^i = Y_0^i + \int_0^t a_i \left(b_i - Y_s^i \right) ds + \sigma_i \int_0^t \int_0^{Y_{s-}^i} \int_{\mathbb{R}^+} \zeta \widetilde{N}_i(ds, du, d\zeta)$$

Since $\nu_i(ds, du, d\zeta) = ds du \tilde{\nu}_i(d\zeta)$, we can write

$$Y_t^i = Y_0^i - A_i \int_0^t (B_i - Y_s^i) ds + \sigma_i \int_0^t \int_0^{Y_{s-}^i} \int_{\mathbb{R}^+} \zeta N_i(ds, du, d\zeta)$$

where

$$A_i = a_i - \sigma_i \int_{\mathbb{R}^+} \zeta \widetilde{\nu}_i(d\zeta), \quad B_i = \frac{a_i b_i}{A_i}$$

with $\widetilde{N}_i(ds, du, d\zeta)$ being the compensated measure of a compound Poisson process with positive jumps.

This kind of dynamics extends that proposed by Benth, Kallsen & Meyer-Brandis (2007), by keeping the basic features of an Ornstein-Uhlenbeck process driven by a subordinator, but it introduces the self-exciting properties in a direct and natural way.

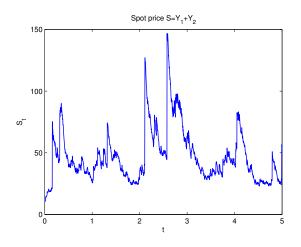


Figure: The Power Spot Price Dynamics.

Derivatives pricing

- Similar as for the interest rate modelling, we can define the equivalent probability measures Q and the spot process Y remains to be in the class of integral type processes.
- In the present model framework, the Forward contract $F(t, T) = \mathbb{E}^{\mathbb{Q}}[S_T | \mathcal{F}_t]$ can be computed explicitly and so are the Flow Forwards

$$F(t, T_1, T_2) = \frac{1}{T_2 - T_1} \mathbb{E}^{\mathbb{Q}} \left[\int_{T_1}^{T_2} S_u du \, | \, \mathcal{F}_t \right]$$

 It is possible to obtain in an almost closed-form the prices of European options written on Forward contracts by using the Laplace transform of each factor.

The risk premium

 The risk premium is a relevant quantity in power markets description defined by

$$R(t,T) = \mathbb{E}^{\mathbb{Q}}[S_T|\mathcal{F}_t] - \mathbb{E}^{\mathbb{P}}[S_T|\mathcal{F}_t]$$

We provide an explicit representation for this quantity which exhibits the sign change feature discussed in literature.

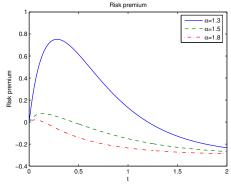


Figure: The Risk Premium Term Structure.

э

Concluding remarks

- The model framework just presented can include all the basic features of interest rate and power price dynamics.
 - It characterizes in a natural and parsimonious way the self-exciting property.
 - It allows to obtain in a closed form the prices of the most common derivatives
 - It exhibits some interesting features observed on the markets.

 Future perspectives include a systematic empirical investigation on real data and efficient calibration techniques. "Branching processes and related topics" East China Normal University Shanghai, China 21 – 25 May, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thanks for your attention !

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 の�?