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Introduction

Particular behaviors of some financial data:

» Sovereign bond markets with persistency of low interest rates
and significant fluctuations in the Euro zone;

» Electricity prices exhibit high spikes and rapid mean-reversion,
seasonality...

Self-exciting features and jump clustering effect?

How to include all the features into a unified and parsimonious
framework description?

An approach based on CBI (continuous state branching
processes with immigration) processes
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Figure: Daily electricity prices in Italy on 2012.
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Modelling approaches in finance

Hawkes process to model the “self-exciting” and the
“clustering” feature: Ait-Sahalia & Jacod (2009), Errais,
Giesecke & Goldberg (2010), Dassios & Zhao (2011),
Rambaldi, Pennesi & Lillo (2014), and Jaisson & Rosenbaum
(2015)...

Affine models for interest rate term structure: Duffie, Pan &
Singleton (2000), Filipovi¢ (2001, 2009), Duffie, Filipovi¢ &
Schachermayer (2003), Keller-Ressel & Steiner (2008), ...

Random fields description in interest rate and energy: Kennedy
(1994), Albeverio, Lytvynov & Mahnig (2004), Benth, Kallsen,
Meyer-Brandis (2007), Barndorff-Nielsen, Benth &Veraart
(2013)



Some literature on CBI processes

Books
Li, Z.: Measure-Valued Branching Processes, Springer, Berlin
(2011).
Pardoux, E.: Probabilistic Models of Population Evolution,
Springer, Berlin (2016)

(Very partial) Papers
Dawson, D.A. & Li, Z.: Skew convolution semigroups and
affine Markov processes. Ann. Probab. 34, 1103-1142 (2006)

Dawson, A. & Li, Z.: Stochastic equations, flows and
measure-valued processes. Ann. Probab. 40, 813-857 (2012)

Li, Z. & Ma, C.: Asymptotic properties of estimators in a
stable Cox-Ingersoll-Ross model. Stoch. Proc. Appl. 125,
3196-3233 (2015)
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Model formulation

Integral representation
t t Ys
Yt=y0+[0 a(b—Ys)ds+a/0 /0 W (ds, du)

+sz0t/0vs_ | ¢Ai(as, du, d0),

W (ds,du): white noise on R? with intensity dsdu,

N(ds, du, d¢): compensated Poisson random measure on R3
with intensity dsduu(d(),

p(d¢) is a Lévy measure satisfying [, (¢ A )p(d¢) < oo.
Besides, W and N are independent of each other.

It follows from of Dawson and Li (2012) that this equation has
a unique strong solution.



The self-exciting feature

We want to illustrate how the self-exciting property arises in
the present framework.

Consider a simple Hawkes process with exponential kernel,
which is defined as a point process J with intensity

t
Yi= Y+ fo e (=) g, 2)

and Y™ is deterministic, representing the background rate.

When a jump arrives, the intensity increases, which incites the
arrival of the next jump, that is the so-called self-exciting
property of Hawkes processes.



Link to Hawkes process

In order to facilitate the comparison with our integral
representation, we give a different characterization of the
intensity.

Let N be a Poisson random measure on R? with intensity

dsdu. Consider the case where J; is of the form
fot Jo = N(ds,du) and hence

t Ys—
Yi= Y+ fo fo =25 N (dfs, du). (3)

In this form, the self-exciting feature can be observed as
follows: the frequency of jumps grows with the process itself
due to the presence of the integral with respect to the variable
u. Moreover, when Y* takes certain particular form, Y
becomes a branching process.

In this context, the self-exciting features is equivalent to the
branching property and the jump intensity is proportional to
the process Y itself.



Link to CIR model

A particular case when the jump term vanishes corresponds to
the well-known CIR model for short interest rates r;.

We illustrate the connection of the above integral
representation for the CIR model with Hawkes processes.

When o7 =0, the CIR process r is given in the form:

t t rs
rt:r0+[0 a(b—rs)ds+a[0 [o W(ds,du), (4)

The equivalent form is

t rs
re = rt*+a/0 [0 e (=) W (ds, du) (5)

where r/ is a deterministic function given by
ri = et +ab [ e7(t-5)ds. This expression shows the
self-exciting feature.



Link to Hawkes process (continued)

When o =0 and u(d¢) = 61(dz), then Y is given by

t t Y
Y, = Y0+abt—f0 (a+a,\,)sts+aNf0 fo N(ds, du) (6)

which is the intensity of Hawkes process [, /Ost N(ds,du), N
being the Poisson random measure with intensity dsdu.

Consider a sequence {Yt("), t> 0}n>1 defined by (6) with
parameters (a/n,nb,on). Then

(Y nt>0) 5 r in D(R,),

where D(RR,) is the Skorokhod space of cadlag processes and
the process r follows a CIR model.

Jaisson and Rosenbaum (2015): nearly unstable Hawkes
process converges, after suitable scaling, to a CIR process.



The a-CIR model setup

We consider the root SDE representation of the a-CIR model

t t t
rt:r0+—/0 a(b—rs)ds+0/; \/f_sstJrszo fsl—/adzs (7)

B = (B¢, t >0) a Browinan motion

Z = (Z;,t >0) a spectrally positive a-stable compensate Lévy
process with parameter « € (1,2] with

_ tq®
Ele 9] =expi-——— > 0.
[e7] exp{ cos(7roz/2)}7 7=

B and Z are independent

Z, follows the a-stable distribution S, (Y, 1,0) with scale
parameter t/®, skewness parameter 1 and zero drift.



Equivalence of two representations

We choose the Lévy measure in the integral representation to be

Lics01d¢

uldc) = ~cos(ma/2) (~a)¢(T+a’

l<a<?, (8)

Then the root representation (7) and the integral representation (1)
are equivalent in the following sense by Li (2011):

The solutions of the two equations have the same probability
law.

On an extended probability space, they are equal almost surely.



A natural extension of the CIR model

When o7 =0, we recover the CIR model.

When « =2, it also reduces to a CIR model but with volatility
parameter (o2 + 20%)1/2.

The difference of Z from a Brownian motion is controlled by
the tail index a:

o a=2: Zis a Brownian motion scaled by V2

o < 2: Zis a pure jump process with heavy tails. More as
close to 1, more likely Z; takes values far from median;

o comparison with Poisson process: Z has an infinite number
of (small) jumps over any time interval, allowing it to capture
the extreme activity.

Existence of the unique strong solution by Fu and Li (2010).



a-stable process Z: 1,=0.1,a=0.1,b=0.3, 6=0.1, 5,=0.3
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Similar properties with CIR model

Boundary condition:

The point 0 is an inaccessible boundary if and only if 2ab > o2 In
particular, a pure jump a-CIR process with ab > 0 never reaches 0
since o = 0.

Branching property :

r can be decomposed as r = r(t) + r(? where for i = 1,2, r{) is an

a-CIR(a, b) &, 07, ) process such that ry = ro(l) + réz) and

b=bM 1 p2)



Continuous state branching process with immigration (CBI)

CBI (Kawazu & Watanabe 1971) of branching mechanism W(-) and
immigration rate ®(-): Markov process X with state space R,
verifying

t
Ey [e_pxt] = exp [—xv(t, p) - fo d)(v(s, p))ds] ,
where v : R, x R, — R satisfies

PER) - w(v(tp), v(0.p)=p

and V and ¢ are functions on R, given by
1 oo
W(q) = Bg+ 502 + [ (e - 1+ qu)m(du),
O(q) =7a+ [ (1= ")w(du),

with 0,7 >0, 8 € R and 7, v being two Lévy measures such that
I~ (un u?)m(du) < oo and [3° (1 A u)v(du) < oo.



Link between a-CIR and CBI processes
Let r be an a-CIR (a,b,0,07,a) process. Then r is a CBI with
. . _ o2 92 o a
branching mechanism: W(q) = ag + %q° - s 9 9)
immigration rate: ®(q) = abgq. (10)

Consequences:
Let r(®) be a-CIR(a, b,0,07,a) process, « € (1,2]. Then
r@) £, 1)y D(R,) as a - 2.
Laplace transform (cf. Filipovi¢ (2001)):

E[e—ﬁrt—l)fot rsds] - exp(— rov(t,&,p) — fotCD(v(s,ﬁ,p))ds),
with 8tV(t,€,p)=—\U(V(t,f,p))'Fp, V(Ovévp)zé'

As t — +o0, r; has a limite distribution r., given by

E[e P ] = exp {— A \IJEq; q} p=>0.



Equivalent martingale measure for bond pricing
Let r be an a-CIR(a, b, 0,07, ) processes under the initial
probability IP.
Fix n € R and 6 € R,, and define

w:nﬁaﬂkW@;@ﬁ[ﬁ[ﬁiﬁw@*inﬁwswdo.

Change of probability: Z% =&(U), with £(U) the Doléans-
Dade exponential of U (Kallsen & Muhle-Karbe, 2010).
ris an a-CIR(a',b’,0,07,a) type process under Q with
(6704

904—1 bl: b !
cos(ma/2) ’ ab/a,

a=a-on-

and a modified Lévy measure

e 10
cos(ma/2)l (—a)(t*e

pw(d¢) =~ dg.

r remains to be a CBI process under Q.



Application to bond pricing

For simplicity, we assume that the short rate r is given by an
a-CIR(a, b,0,0z7, 1, ) model under Q.

Zero-coupon bond price:

B(t,T) = EQ[exp ( - /;T rsds) |_7-}] = exp( -nv(T-t)- ab/;T_t v(s)ds)
where v(-) is given by

ov(t)
ot

=1-V(v(t)), v(0)=0,

o

. 0.2
with W(q) = ag + 7q2 - = Trza/z)qa.
We have

_ t dx
v(t) = F1(t) where f(t) = fo ooy W



Proposition
The function v(-) is increasing with respect to € (1,2]. In
particular, the bond price B(0, T) is decreasing with respect to .
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Figure: Bond price is decreasing w.r.t. «, curve CIR (in red) corresponds
tooz=0



Remarks on bond prices

Empirical studies underline that CIR model systematically
overestimates short interest rates, e.g. Brown and Dybvig
(1986) and Gibbons and Ramaswamy (1993)

The above proposition shows that the a-CIR model is suitable
to describe the low interest rate in the expectation sense.

Explanation based on self-exciting property: as the interest
rate becomes low, the self-exciting feature implies decreasing
frequency of jumps and enforce the tendency of low interest
rate.

In other CIR+jump models e.g. Duffie and Garleanu (2001),
Keller-Ressel and Steiner (2008), LOU etc., the bond prices
are in general smaller than the CIR ones (difficult to reconcile
the jumps with low interest rate).



Jump behavior

The jumps, especially the large jumps capture the significant
changes in the interest rate and may imply the downgrade risk
of credit quality.

Fix y > 0. Consider the jumps of the process r which are larger
than o7y and the associated truncated process r¥) as

t — t rs
i =0+ [ y)(Blay) ~r)ds s [1 [ wias,d)

+azfotf0rs' foyCN(ds,du,d().

It is also a CBI process which coincides with r up to the first
large jump 7, :=inf{t >0: Ar; >0zy} and has the branching
mechanism given by

VO Z w48 fyw(l e %) u(dC).



Laplace transform of the jump counter process

Let J? denote the number of jumps of r with jump size larger than

ozy in [0,t], i.e.
J%/ = Z 1{Ars>0'2y}'

0<s<t

Then for any p>0 and t >0,

E[e‘pny] = exp (_/(pvya t)ro - abﬂtl(p’y’s)ds)

where I(p, y,t) is the unique solution of the following equation

ol ,y,t a ) o
(Pay ) :UZ/ (l—e P I(P7y,t)C)ua(d<) _\|;l()l)’)(/(p7y7 t)),
t y

with initial condition /(p,y,0) = 0.



Probability law of the first large jump

We have
t
P(ry > t) = P(J) =0) =exp (~ I(y, t)ro - abfo I(y,s)ds)

where [(y, t) is the unique solution of

dl

G0 =08 [T () vy 1)),

with initial condition /(y,0) = 0.



Probability function (7, > t) for the first big jump
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Application to power price modeling

We assume the spot price process S; to evolve accordng to the
following dynamics:

51_- = Ol(t) + Xt

where a(t) is a seasonality function of deterministic type and
the process X; is a superposition of the factors Y{:

Xt = Z Ytl,
The factors Y; evolve according to equation (1) written
before, but we neglect the Brownian contribution

. . t ) t YL —
Yt':y(;+[0 a,-(b,-—YS')ds+a,-fO fo fwg/v,-(ds,du,dg)



Since v;(ds, du, d() = dsduv;(d(), we can write

. . t . t YL
Y':Y'—A,f B;-Y!)d ff / N;(ds, du, d
Yin [ YDdsear [C [T [ cmicos,du )

where b
_ 2:b:
Ai=ai—0ifR+CVi(dC), Bi:,IAT,-I
with N,-(ds7 du, d() being the compensated measure of a
compound Poisson process with positive jumps.

This kind of dynamics extends that proposed by Benth,
Kallsen & Meyer-Brandis (2007), by keeping the basic features
of an Ornstein-Uhlenbeck process driven by a subordinator,
but it introduces the self-exciting properties in a direct and
natural way.
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Derivatives pricing

Similar as for the interest rate modelling, we can define the
equivalent probability measures Q and the spot process Y
remains to be in the class of integral type processes.

In the present model framework, the Forward contract
F(t, T)=E®[St|F:] can be computed explicitly and so are
the Flow Forwards

1
F(t, Ty, Ta) = E@[[ Sdu]-"]
(t,T1, T2) = noTh | e
It is possible to obtain in an almost closed-form the prices of
European options written on Forward contracts by using the
Laplace transform of each factor.



The risk premium

The risk premium is a relevant quantity in power markets
description defined by

R(t, T) = EQ[S7|F:] - EF [ST|F:]

We provide an explicit representation for this quantity which
exhibits the sign change feature discussed in literature.

Risk premium

1

Risk premium

0.5 1 15 2

Figure: The Risk Premium Term Structure.



Concluding remarks

The model framework just presented can include all the basic
features of interest rate and power price dynamics.
» It characterizes in a natural and parsimonious way the
self-exciting property.
» It allows to obtain in a closed form the prices of the most
common derivatives
» It exhibits some interesting features observed on the markets.

Future perspectives include a systematic empirical
investigation on real data and efficient calibration techniques.
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