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Introduction

▸ Particular behaviors of some financial data:
▸ Sovereign bond markets with persistency of low interest rates
and significant fluctuations in the Euro zone;

▸ Electricity prices exhibit high spikes and rapid mean-reversion,
seasonality...

▸ Self-exciting features and jump clustering effect?
▸ How to include all the features into a unified and parsimonious
framework description?

▸ An approach based on CBI (continuous state branching
processes with immigration) processes



Figure: 10-years interest rates of Euro area countries.



Figure: Daily electricity prices in Italy on 2012.



Modelling approaches in finance

▸ Hawkes process to model the “self-exciting” and the
“clustering” feature: Aït-Sahalia & Jacod (2009), Errais,
Giesecke & Goldberg (2010), Dassios & Zhao (2011),
Rambaldi, Pennesi & Lillo (2014), and Jaisson & Rosenbaum
(2015)...

▸ Affine models for interest rate term structure: Duffie, Pan &
Singleton (2000), Filipović (2001, 2009), Duffie, Filipović &
Schachermayer (2003), Keller-Ressel & Steiner (2008), ...

▸ Random fields description in interest rate and energy: Kennedy
(1994), Albeverio, Lytvynov & Mahnig (2004), Benth, Kallsen,
Meyer-Brandis (2007), Barndorff-Nielsen, Benth &Veraart
(2013)



Some literature on CBI processes

Books
▸ Li, Z.: Measure-Valued Branching Processes, Springer, Berlin
(2011).

▸ Pardoux, E.: Probabilistic Models of Population Evolution,
Springer, Berlin (2016)

(Very partial) Papers
▸ Dawson, D.A. & Li, Z.: Skew convolution semigroups and
affine Markov processes. Ann. Probab. 34, 1103-1142 (2006)

▸ Dawson, A. & Li, Z.: Stochastic equations, flows and
measure-valued processes. Ann. Probab. 40, 813-857 (2012)

▸ Li, Z. & Ma, C.: Asymptotic properties of estimators in a
stable Cox-Ingersoll-Ross model. Stoch. Proc. Appl. 125,
3196-3233 (2015)



Plan of the talk

▸ Continuous state branching processes

▸ α-CIR model and properties

▸ Applications to interest rate and power price modelling

▸ Concluding remarks



Model formulation

Integral representation

Yt = Y0 + ∫
t

0
a (b −Ys)ds + σ∫

t

0
∫

Ys

0
W (ds,du)

+ σZ ∫
t

0
∫

Ys−

0
∫
R+
ζÑ(ds,du,dζ),

(1)

▸ W (ds,du): white noise on R2
+ with intensity dsdu,

▸ Ñ(ds,du,dζ): compensated Poisson random measure on R3
+

with intensity dsduµ(dζ),
▸ µ(dζ) is a Lévy measure satisfying ∫

∞
0 (ζ ∧ ζ2)µ(dζ) <∞.

Besides, W and N are independent of each other.
▸ It follows from of Dawson and Li (2012) that this equation has
a unique strong solution.



The self-exciting feature

▸ We want to illustrate how the self-exciting property arises in
the present framework.

▸ Consider a simple Hawkes process with exponential kernel,
which is defined as a point process J with intensity

Yt = Y ∗
t + ∫

t

0
e−a(t−s)dJs (2)

and Y ∗ is deterministic, representing the background rate.
▸ When a jump arrives, the intensity increases, which incites the
arrival of the next jump, that is the so-called self-exciting
property of Hawkes processes.



Link to Hawkes process
▸ In order to facilitate the comparison with our integral
representation, we give a different characterization of the
intensity.

▸ Let N be a Poisson random measure on R2
+ with intensity

dsdu. Consider the case where Jt is of the form
∫
t

0 ∫
Ys−

0 N(ds,du) and hence

Yt = Y ∗
t + ∫

t

0
∫

Ys−

0
e−a(t−s)N(ds,du). (3)

▸ In this form, the self-exciting feature can be observed as
follows: the frequency of jumps grows with the process itself
due to the presence of the integral with respect to the variable
u. Moreover, when Y ∗ takes certain particular form, Y
becomes a branching process.

▸ In this context, the self-exciting features is equivalent to the
branching property and the jump intensity is proportional to
the process Y itself.



Link to CIR model

▸ A particular case when the jump term vanishes corresponds to
the well-known CIR model for short interest rates rt .

▸ We illustrate the connection of the above integral
representation for the CIR model with Hawkes processes.

▸ When σZ = 0, the CIR process r is given in the form:

rt = r0 + ∫
t

0
a (b − rs)ds + σ∫

t

0
∫

rs

0
W (ds,du), (4)

▸ The equivalent form is

rt = r∗t + σ∫
t

0
∫

rs

0
e−a(t−s)W (ds,du) (5)

where r∗t is a deterministic function given by
r∗t = r0e

−at + ab ∫
t

0 e−a(t−s)ds. This expression shows the
self-exciting feature.



Link to Hawkes process (continued)

▸ When σ = 0 and µ(dζ) = δ1(dz), then Y is given by

Yt = Y0+abt−∫
t

0
(a+σN)Ysds+σN ∫

t

0
∫

Ys−

0
N(ds,du) (6)

which is the intensity of Hawkes process ∫
t

0 ∫
Ys−

0 N(ds,du), N
being the Poisson random measure with intensity dsdu.

▸ Consider a sequence {Y (n)t , t ≥ 0}
n≥1 defined by (6) with

parameters (a/n,nb, σN). Then

(Y (n)nt /n, t ≥ 0) LÐ→ r in D(R+),

where D(R+) is the Skorokhod space of càdlàg processes and
the process r follows a CIR model.

▸ Jaisson and Rosenbaum (2015): nearly unstable Hawkes
process converges, after suitable scaling, to a CIR process.



The α-CIR model setup

We consider the root SDE representation of the α-CIR model

rt = r0 + ∫
t

0
a (b − rs)ds + σ∫

t

0

√
rsdBs + σZ ∫

t

0
r
1/α
s− dZs (7)

▸ B = (Bt , t ≥ 0) a Browinan motion
▸ Z = (Zt , t ≥ 0) a spectrally positive α-stable compensate Lévy
process with parameter α ∈ (1,2] with

E [e−qZt ] = exp{− tqα

cos(πα/2)
} , q ≥ 0.

▸ B and Z are independent
Zt follows the α-stable distribution Sα(t1/α,1,0) with scale
parameter t1/α, skewness parameter 1 and zero drift.



Equivalence of two representations

We choose the Lévy measure in the integral representation to be

µ(dζ) = −
1{ζ>0}dζ

cos(πα/2)Γ(−α)ζ1+α , 1 < α < 2, (8)

Then the root representation (7) and the integral representation (1)
are equivalent in the following sense by Li (2011):

▸ The solutions of the two equations have the same probability
law.

▸ On an extended probability space, they are equal almost surely.



A natural extension of the CIR model

▸ When σZ = 0, we recover the CIR model.
▸ When α = 2, it also reduces to a CIR model but with volatility
parameter (σ2 + 2σ2

Z)
1/2.

▸ The difference of Z from a Brownian motion is controlled by
the tail index α:
◇ α = 2: Z is a Brownian motion scaled by

√
2;

◇ α < 2: Z is a pure jump process with heavy tails. More as α
close to 1, more likely Zt takes values far from median;
◇ comparison with Poisson process: Z has an infinite number
of (small) jumps over any time interval, allowing it to capture
the extreme activity.

▸ Existence of the unique strong solution by Fu and Li (2010).



Simulation of processes Z and r with different α
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Similar properties with CIR model

Boundary condition:
The point 0 is an inaccessible boundary if and only if 2ab ≥ σ2. In
particular, a pure jump α-CIR process with ab > 0 never reaches 0
since σ = 0.

Branching property :
r can be decomposed as r = r (1) + r (2) where for i = 1,2, r (i) is an
α-CIR(a,b(i), σ, σZ , α) process such that r0 = r

(1)
0 + r

(2)
0 and

b = b(1) + b(2).



Continuous state branching process with immigration (CBI)
CBI (Kawazu & Watanabe 1971) of branching mechanism Ψ(⋅) and
immigration rate Φ(⋅): Markov process X with state space R+
verifying

Ex [e−pXt ] = exp [−xv(t,p) − ∫
t

0
Φ(v(s,p))ds] ,

where v ∶ R+ ×R+ → R satisfies

∂v(t,p)
∂t

= −Ψ(v(t,p)), v(0,p) = p

and Ψ and Φ are functions on R+ given by

Ψ(q) = βq + 1
2
σ2q2 + ∫

∞

0
(e−qu − 1 + qu)π(du),

Φ(q) = γq + ∫
∞

0
(1 − e−qu)ν(du),

with σ, γ ≥ 0, β ∈ R and π, ν being two Lévy measures such that
∫
∞

0 (u ∧ u2)π(du) <∞ and ∫
∞

0 (1 ∧ u)ν(du) <∞.



Link between α-CIR and CBI processes
Let r be an α-CIR (a,b, σ, σZ , α) process. Then r is a CBI with

branching mechanism: Ψ(q) = aq + σ2

2 q2 − σα
Z

cos(πα/2)q
α (9)

immigration rate: Φ(q) = abq. (10)

Consequences:
▸ Let r (α) be α-CIR(a,b, σ, σZ , α) process, α ∈ (1,2]. Then
r (α)

LÐ→ r (2) in D(R+) as α → 2.
▸ Laplace transform (cf. Filipović (2001)):

E[e−ξrt−p ∫
t
0 rsds] = exp ( − r0v(t, ξ,p) − ∫

t

0
Φ(v(s, ξ,p))ds),

with ∂tv(t, ξ,p) = −Ψ(v(t, ξ,p)) + p, v(0, ξ,p) = ξ.
▸ As t → +∞, rt has a limite distribution r∞ given by

E[e−pr∞] = exp{−∫
p

0

Φ(q)
Ψ(q)

dq} , p ≥ 0.



Equivalent martingale measure for bond pricing
▸ Let r be an α-CIR(a,b, σ, σZ , α) processes under the initial
probability P.

▸ Fix η ∈ R and θ ∈ R+, and define

Ut ∶= η∫
t

0
∫

rs

0
W (ds,du)+∫

t

0
∫

rs−

0
∫

∞

0
(e−θζ−1)Ñ(ds,du,dζ).

▸ Change of probability: dQ
dP = E(U), with E(U) the Doléans-

Dade exponential of U (Kallsen & Muhle-Karbe, 2010).
▸ r is an α-CIR(a′,b′, σ, σZ , α) type process under Q with

a′ = a − ση − ασZ
cos(πα/2)

θα−1, b′ = ab/a′,

and a modified Lévy measure

µ′(dζ) = −
e−θζ1{ζ>0}

cos(πα/2)Γ(−α)ζ1+α dζ.

r remains to be a CBI process under Q.



Application to bond pricing

For simplicity, we assume that the short rate r is given by an
α-CIR(a,b, σ, σZ , µ,α) model under Q.

▸ Zero-coupon bond price:

B(t,T ) = EQ[ exp ( − ∫
T

t
rsds) ∣Ft] = exp ( − rtv(T − t) − ab∫

T−t

0
v(s)ds)

where v(⋅) is given by

∂v(t)
∂t

= 1 −Ψ(v(t)), v(0) = 0,

with Ψ(q) = aq + σ2

2 q2 − σα
Z

cos(πα/2)q
α.

▸ We have

v(t) = f −1(t) where f (t) = ∫
t

0

dx

1 −Ψ(x)
(11)



Proposition
The function v(⋅) is increasing with respect to α ∈ (1,2]. In
particular, the bond price B(0,T ) is decreasing with respect to α.
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Remarks on bond prices

▸ Empirical studies underline that CIR model systematically
overestimates short interest rates, e.g. Brown and Dybvig
(1986) and Gibbons and Ramaswamy (1993)

▸ The above proposition shows that the α-CIR model is suitable
to describe the low interest rate in the expectation sense.

▸ Explanation based on self-exciting property: as the interest
rate becomes low, the self-exciting feature implies decreasing
frequency of jumps and enforce the tendency of low interest
rate.

▸ In other CIR+jump models e.g. Duffie and Gârleanu (2001),
Keller-Ressel and Steiner (2008), LOU etc., the bond prices
are in general smaller than the CIR ones (difficult to reconcile
the jumps with low interest rate).



Jump behavior

▸ The jumps, especially the large jumps capture the significant
changes in the interest rate and may imply the downgrade risk
of credit quality.

▸ Fix y > 0. Consider the jumps of the process r which are larger
than σZy and the associated truncated process r (y) as

r
(y)
t = r0 + ∫

t

0
ã(α, y)(b̃(α, y) − rs)ds + σ∫

t

0
∫

rs

0
W (ds,du)

+ σZ ∫
t

0
∫

rs−

0
∫

y

0
ζÑ(ds,du,dζ).

▸ It is also a CBI process which coincides with r up to the first
large jump τy ∶= inf{t > 0 ∶ ∆rt > σZy} and has the branching
mechanism given by

Ψ(y) = Ψ + σαZ ∫
∞

y
(1 − e−qζ)µ(dζ).



Laplace transform of the jump counter process

Let Jyt denote the number of jumps of r with jump size larger than
σZy in [0, t], i.e.

Jyt ∶= ∑
0≤s≤t

1{∆rs>σZ y}.

Then for any p ≥ 0 and t ≥ 0,

E[e−pJ
y
t ] = exp (−l(p, y , t)r0 − ab∫

t

0
l(p, y , s)ds)

where l(p, y , t) is the unique solution of the following equation

∂l(p, y , t)
∂t

= σαZ ∫
∞

y
(1 − e−p−l(p,y ,t)ζ)µα(dζ) −Ψ(y)α (l(p, y , t)),

with initial condition l(p, y ,0) = 0.



Probability law of the first large jump

We have

P(τy > t) = P(Jyt = 0) = exp ( − l(y , t)r0 − ab∫
t

0
l(y , s)ds)

where l(y , t) is the unique solution of

dl

dt
(y , t) = σαZ ∫

∞

y
µ(dζ) −Ψ(y)(l(y , t)),

with initial condition l(y ,0) = 0.



Probability function P(τy > t) for the first big jump
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Application to power price modeling

▸ We assume the spot price process St to evolve accordng to the
following dynamics:

St = α(t) +Xt

where α(t) is a seasonality function of deterministic type and
the process Xt is a superposition of the factors Y i

t :

Xt =∑Y i
t ,

▸ The factors Y i
t evolve according to equation (1) written

before, but we neglect the Brownian contribution

Y i
t = Y i

0+∫
t

0
ai (bi −Y i

s )ds+σi ∫
t

0
∫

Y i
s−

0
∫
R+
ζÑi(ds,du,dζ)



▸ Since νi(ds,du,dζ) = dsduν̃i(dζ), we can write

Y i
t = Y i

0 −Ai ∫
t

0
(Bi −Y i

s )ds+σi ∫
t

0
∫

Y i
s−

0
∫
R+
ζNi(ds,du,dζ)

where
Ai = ai − σi ∫

R+
ζν̃i(dζ), Bi =

aibi
Ai

with Ñi(ds,du,dζ) being the compensated measure of a
compound Poisson process with positive jumps.

▸ This kind of dynamics extends that proposed by Benth,
Kallsen & Meyer-Brandis (2007), by keeping the basic features
of an Ornstein-Uhlenbeck process driven by a subordinator,
but it introduces the self-exciting properties in a direct and
natural way.
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Derivatives pricing

▸ Similar as for the interest rate modelling, we can define the
equivalent probability measures Q and the spot process Y
remains to be in the class of integral type processes.

▸ In the present model framework, the Forward contract
F (t,T ) = EQ[ST ∣Ft] can be computed explicitly and so are
the Flow Forwards

F (t,T1,T2) =
1

T2 −T1
EQ [∫

T2

T1
Sudu ∣Ft]

▸ It is possible to obtain in an almost closed-form the prices of
European options written on Forward contracts by using the
Laplace transform of each factor.



The risk premium
▸ The risk premium is a relevant quantity in power markets
description defined by

R(t,T ) = EQ [ST ∣Ft] −EP [ST ∣Ft]
▸ We provide an explicit representation for this quantity which
exhibits the sign change feature discussed in literature.
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Concluding remarks

▸ The model framework just presented can include all the basic
features of interest rate and power price dynamics.

▸ It characterizes in a natural and parsimonious way the
self-exciting property.

▸ It allows to obtain in a closed form the prices of the most
common derivatives

▸ It exhibits some interesting features observed on the markets.

▸ Future perspectives include a systematic empirical
investigation on real data and efficient calibration techniques.



Upcoming workshop

“Branching processes and related topics”

East China Normal University

Shanghai, China
21 – 25 May, 2018



Thanks for your attention !


